逻辑回归的输出是什么?
\[h_{\theta} = P(y = 1| x;\theta)\]
也就是给定x和在参数theta下,y=1(default)的概率
逻辑回归的输入是什么?
\[ y_{\theta} = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2} .... \]
也就是线性回归
- 所以Logistic Regression的决策边界是线性回归
- 逻辑回归的本质还是线性回归,也会看到有一些文章说在特征到结果的映射中多加了一层函数映射
我们用什么把输入与输出联系起来?
Logit function:
\[Logit(p) = ln(odds) = ln(\frac{p}{1-p})\]
定义域为[0,1], 值域为R.
将上述方程取反函数,得到sigmoid函数,定义域为R, y为P, 值域为[0,1].
\[Sigmoid(\alpha) = logit^{-1}(\alpha) = \frac{1}{1+e^{-\alpha}}\]
Maximum likelihood estimation 来估计参数theta的值
\[L(\theta) = \prod_{i:y_{i}=1}p(x_{i})\prod_{i^{\prime}:y_{i^{\prime}}=0}(1-p(x_{i^{\prime}}))\]
- Get coefficients that maximizes the likelihood, then use them for predictions
- Maximizing the likelihood function is equivalent to minimizing the cost function \(J(\theta)\)
\[J(\theta) = - \sum_{i=1}^{n}[y_{i}log(P(y_{i} = 1 | x)) + (1 - y_{i})log(1 - P(y_{i}=1|x))]\]